Just How Capable is My Detection System, Really?

Victor W. Lowe, Jr.

Context

- Detection Systems measurement system plus decision rule- are becoming increasingly important
 - failed polygraph test leads FBI to call off warning of terrorist attacks on Las Vegas
 - K-9 detection systems
 - contraband
 - explosive
 - seizures
 - etc
 - C-130A airframe
- How do we / should we characterize the performance of a detection system

Examples

- Simple, yet dramatic
- Real data, readily available in the open literature
- Chosen to illustrate larger truths, which are alluded to but not spelled out in detail
- Suggest questions to ask about *any* detection
- concepts presented generalize to to detection systems
- Illustrate common data traps that ensnare the unwary

"Knowing there's a trap is the first step in evading it"

Managing Knowledge

Duke Leto Atreides

Dune, 1965

Frank Herbert

Real-world Example

- Data taken from *Probabilistic-reasoning in clinical medicine: Problems and opportunities*, by David M. Eddy.
- Article appeared in *Judgement under uncertainty: Heuristics and biases*, edited by David Kahneman, Paul Slovis, and Amos Tversky, Cambridge University Press, 1982
- Eddy uses data from Snyder, R. E. *Mammography: Contributions and limitations*, published in Clinical Obstetrics and Gynecology, 1966, 9, 207-220.

X-Rays evaluated (by radiologists who did not know biopsy results) with the following results False negative

8/19/2005

Managing Knowledge

Chapter 7: Theory of Variation

But the data we have looks like *this*, which Eddy asked physicians to evaluate

	malignant(+)	benign(-)
malignant (M)	P(+ M) = 0.792	P(- M) = 0.208
benign (B)	P(+ B) = 0.096	P(- B) = 0.904

Note: P(M) = 0.01, P(B) = 0.99

- Physician agreed that their clinical observations were consistent with Eddy's data: ~ 95% of the physicians estimated P(M | +) = ~ .75
- did not know P(M | +) P(+ | M)

8/19/2005

Data Trap 1

Working on the wrong problem!

- Not knowing the difference between the performance of the measurement system and the detection system
- Not knowing the difference between P(M | +) and P(+|M)
- Measurement system is not the detection system

Thus, the study looked like this ...

Patient Interested in P(M|+), Not P(+|M)

 All 10,000 balls are in one urn
 One ball is chosen at random
 The ball has a "+" on it; what is the probability that it is grey?

 $P(M | +) = \frac{\text{Number of white balls with } +}{\text{Total number of balls with } +}$

$$=\frac{79}{79+960}$$

$$=$$
 0.076 (= 0.77 with round off)

Suppose a better measurement system was available

Managing Knowledge 8/19/2005

Chapter 7: Theory of Variation

The correct way to analyze data from the new experimental design:

$$P(M | +) = \frac{P(+\& M)}{P(+)}$$
required; it is
already "baked"
into the data

This result should be comforting; the same test applied to the same population yields the same results, but data analysis must be compatible with the way the sample was selected

Note base rate not

The frightening part of the story

• Suppose the first analyst, thinking that the *real* data had been obtained by the second experimental design, analyzed it accordingly ...

$$P(M|+) = \frac{P(+\& M)}{P(+)}$$

$$= \frac{0.792}{0.792 + 0.096} = .8922$$

Data Trap 2

Right problem, wrong data

•Not knowing the difference between P(+ & M) and P(+ | M)

Let's emphasize that again!

- life-or-death decision making situation
 - properly analyzed, the data say
 - P(M | +) = .077, very weak reason to elect surgery
 - improperly analyzed, the data appear to say
 - P(M | +) = .892, very strong reason to elect surgery
- Suppose the data analyst does not know how the data to be analyzed was collected. What statistical inferences can be legitimately drawn from the data?

– Fundamental question for data miners

8/19/2005

Points to Ponder

- Simple statistical techniques no help here
 - appropriate statistical techniques often much more mathematically sophisticated than the ones illustrated here
 - may not be possible to apply statistical techniques without some technical knowledge
- to be able to analyze the data, you *must* know how it was gathered (which urn it was sampled from)
 - many people, including professionals, don't understand that, they don't seek to obtain the appropriate data

More Points to Ponder

- performance of detection system (P(M | +), P(B |)) depends on base rate; performance of measurement system doesn't
- detection system specifications cannot be well specified without anticipating base rate
 - engineering
 - purchasing
 - social determinations
 - good vs bad employees; detecting child abuse, etc.
- base rate, and therefore the usefulness of the measurement system, may change over time

Chapter 7: Theory of Variation

Summary Points

- "There is no substitute for Knowledge"
 - W. Edwards Deming
- Conditional probabilities want to be your friends. Be nice to them. Don't ignore them. They can help you.
- Techniques used to analyze data *MUST* be compatible with the data collection procedure
- Bad statistical thinking can kill

8/19/2005

"Knowing there's a trap is the first step in evading it"

Managing Knowledge

Duke Leto Atreides

Dune, 1965

Frank Herbert

